Supporting Information

Modulation of anisotropic photoluminescence and photocurrent in PEA₂PbI₄ single crystal thin-films

Tao Man (满涛)¹, Zicheng Li (李子成)¹, Xinyu Duan (段心玉)¹, Zehui Zhou (周泽慧)¹, Junjie Cui (崔俊杰)¹, Xiangxiang Chen (陈香香)¹, Beibei Xu (许贝贝)¹*, Jianrong Qiu (邱建荣)¹

1Institute of Micro & Nano Photonics, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; Zhejiang University, Hangzhou 310058, China

	PEA₂PbI₄	
Temperature:	RT	100 K
Crystal system:	Triclinic P	Triclinic P
Lattice parameters:	$\begin{array}{ll} a = 8.725 \ \mathring{A}, & \alpha = 95.00^{\circ} \\ b = 8.728 \ \mathring{A}, & \beta = 100.14^{\circ} \\ c = 16.591 \ \mathring{A}, & \gamma = 90.39^{\circ} \end{array}$	$ a = 8.658 \text{ Å}, \alpha = 89.65^{\circ} \\ b = 8.665 \text{ Å}, \beta = 85.26^{\circ} \\ c = 16.240 \text{ Å}, \gamma = 89.54^{\circ} $
Unit cell volume:	1250 ų	1213 ų

Fig. S1: The lattice parameters of the crystal at room temperature and $100\ K$.

Fig. S2: The thicknesses of PEA₂PbI₄ and BN.

^{*}Corresponding author: <u>bbxu2019@zju.edu.cn</u>

Fig. S3: The excitation power-dependent spectra of PEA₂PbI₄ crystal.

Fig. S4: Spectra of different samples at different excitation light angles (a) and detection angles (b).

Fig. S5: Trend of P2 and P3 intensity as a function of detection angles (\mathcal{B}) .

Fig. S6: PL spectrum without half-wave-plate (purple curve), PL spectrum with one half-wave-plate at the excitation light port (green curve), PL spectrum with one half-wave-plate at the excitation light port and one half-wave-plate before the emission collection system (green curve).

Fig. S7: The spectra changes of PEA_2PbI_4 crystal in 10 min at 78 K.

Fig. S8: Voltage-dependent PL spectra at selected detection angles $\beta = 90^{\circ}$ (left) and $\beta = 0^{\circ}$ (right).

Fig. S9: Under different light intensities, the changes in photocurrent at different voltages when changing the polarization angle (a) of the excitation laser from 0° to 90°.

Fig. S10: Under selected voltages (-30 V, 30 V, 0 V), the changes in photocurrent at different light intensities with the detection angles set as 0°, 45°, and 90° (from left to right).

Fig. S11: Under different light intensities, the changes in photocurrent at different voltages with the detection angles set as 0°, 90°, and 0° in turn (from left to right).